58 research outputs found

    Robust position control of ultrasonic motor using VSS observer

    Get PDF
    Intrinsic properties of ultrasonic motor (high torque for low speed, high static torque, compact in size, etc.) offer great advantages for industrial applications. However, when load torque is applied, dead-zone occurs in control input. Therefore, sliding mode controller, which is a nonlinear controller, is adopted for ultrasonic motor. The state quantities, such as acceleration, speed, and position are needed to apply the sliding mode controller for position control. However, rotary encoder causes quantization errors in the speed information. This paper presents a robust position control method for ultrasonic motor by using Variable Structure System(VSS) observer. The state variables for sliding mode controller are estimated by the VSS observer. Besides, a small, low cost, and good response sliding mode controller is designed in this paper by using a micro computer that is essential in embedded system for the developments of industrial equipments. The effectiveness of the proposed method is verified by experimental results

    Control of an Autonomous Hybrid Microgrid as Energy Source for a Small Rural Village

    Get PDF
    Nowadays, the exhaustion of electricity power in rural areas is becoming an important issue for many African Nations. Moreover, challenges include the high cost of extending the power grid to these locations, the economic health of the utilities and lack of revenue in impoverished villages. Numerous new initiatives are being implemented in the countries some of them co-financed by international organizations. In this paper, the hybrid microgrid is carried out as a feasible solution for a small rural village. A model of hybrid microgrid consisting of combination of photovoltaic (PV) panels and battery energy storage (BES) and a control system for managing the components of entire system to feed the village as local load is proposed. The control system must avoid the interruptions of power delivered to the consumers (village) and, therefore, good quality and reliability of system is required. The PI controllers are used to regulate the voltage and current using three-phase dq transformation, while the parameters are determined using Ziegler-Nichols tuning method. The effectiveness of the proposed method is verified by simulation results given by the Matlab/SimPowerSystems environment. 

    Robust position control of ultrasonic motor considering dead-zone

    Get PDF
    Intrinsic properties of ultrasonic motor (high torque for low speed, high static torque, compact in size, etc.) offer great advantages for industrial applications. However, when load torque is applied, dead-zone occurs in the control input. Therefore, a nonlinear controller, which considers dead-zone, is adopted for ultrasonic motor. The state quantities, such as acceleration, speed, and position are needed to apply the nonlinear controller for position control. However, rotary encoder causes quantization errors in the speed information. This paper presents a robust position control method for ultrasonic motor considering dead-zone. The state variables for nonlinear controller are estimated by a Variable Structure System (VSS) observer. Besides, a small, low cost, and good response nonlinear controller is designed by using a micro computer that is essential in embedded system for the developments of industrial equipments. Effectiveness of the proposed method is verified by the experimental results

    Strategija upravljanja pozicijom ultrazvučnog motora s putujućim valom

    Get PDF
    Since a conventional controller is continuous one, control period is normally set for a long time. When applying that controller for a travelling-wave ultrasonic motor whose parameters and performance are time-varying as a result of increasing temperature and operating condition, it is consequently resulted in degradation of the control performance. In this paper, a digital control algorithm is proposed for position control of the motors to shorten the long control period to maintain the stability of the motor performance. The proposed controller is digitally implemented by a SH7125 microcomputer utilizing a high-performance embedded workshop. The state quantities such as acceleration, speed and position, which are necessary for digital implementation, are provided by a rotary encoder. However, the optical encoder causes quantization errors in the speed information. To overcome the problem, a digital Variable Structure System (VSS) observer is also included to estimate the state quantities. The control input will be calculated after comparing the measured values and the estimated values given by the VSS observer. In short, a small, low cost and fast responsive digital controller is designed, based on a digital VSS observer, by using the SH7125 microcomputer. Effectiveness and reliability of the proposed digital controller are experimentally verified.Strategija upravljanja pozicijom ultrazvučnog motora s putujućim valom Sažetak: S obzirom da je standardni regulator najčešće kontinuirani, period upravljanja obično je postavljen na duži period. Koristeći takav regulator pri upravljanju ultrazvučnim motorom s putujućim valom, čiji su parametri i svojstva vremenski promjenjivi zbog povećanja temperature i promjena uvjeta rada, rezultat su smanjena upravljačka svojstva. U ovome radu predložen je digitalni upravljački algoritam za upravljanje pozicijom motora u svrhu smanjenja dugačkog perioda upravljanja za održavanje stabilnosti svojstava motora. Regulator je implementiran koristeći SH7125 mikroračunalo uz HEW (engl. high-performance embedded workshop) okruženje. Iznosi veličina kao što su akceleracija, brzina i pozicija, nužnih za digitalnu implementaciju, dobiveni su iz rotirajućeg enkodera. Međutim, optički enkoder dovodi do greške kvantizacije kod proračuna brzine. U svrhu smanjenja tog problema, u proces proračuna iznosa varijabli uključen je VSS (engl. Variable Structure System) estimator. Upravljački ulaz računa se nakon usporedbe mjerenih i estimiranih vrijednosti dobivenih korištenjem VSS-a. Dizajniran je digitalni regulator malih dimenzija, jeftine cijene i brzog odziva, temeljen na digitalnom VSS estimatoru koristeći SH7125 mikroračunalo. Eksperimentalno je provjerena efikasnost i pouzdanost digitalnog regulatora

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver

    Get PDF
    Iron is an essential component of the erythrocyte protein hemoglobin and is crucial to oxygen transport in vertebrates. In the steady state, erythrocyte production is in equilibrium with erythrocyte removal1. In various pathophysiological conditions, however, erythrocyte life span is severely compromised, which threatens the organism with anemia and iron toxicity2,3. Here we identify an on-demand mechanism that clears erythrocytes and recycles iron. We show that Ly-6Chigh monocytes ingest stressed and senescent erythrocytes, accumulate in the liver via coordinated chemotactic cues, and differentiate to ferroportin 1 (FPN1)-expressing macrophages that can deliver iron to hepatocytes. Monocyte-derived FPN1+ Tim-4neg macrophages are transient, reside alongside embryonically-derived Tim-4high Kupffer cells, and depend on Csf1 and Nrf2. The spleen likewise recruits iron-loaded Ly-6Chigh monocytes, but these do not differentiate into iron-recycling macrophages due to the suppressive action of Csf2. Inhibiting monocyte recruitment to the liver leads to kidney and liver damage. These observations identify the liver as the primary organ supporting rapid erythrocyte removal and iron recycling and uncover a mechanism by which the body adapts to fluctuations in erythrocyte integrity

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    学習成果定着化への授業改善の試み

    Get PDF
    corecore